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ABSTRACT

ON QUIVER REPRESENTATIONS AND DYNKIN DIAGRAMS

Nikita Borisov

Wolfgang Ziller

In this expository paper, we develop the theory of root systems and study them using Dynkin

diagrams. We then develop the the theory of quiver representations and prove a connection between

these representations and root systems, called Gabriel’s theorem, which states that if a quiver arose

from a Dynkin diagram then its indecomposable quiver representations are counted by positive

roots. The theory is then generalized beyond quivers arising from Dynkin diagram, which have

connections to Kac-Moody Lie algebras. We also give applications to the representation theory of

finite dimensional C-algebras and classifying finite subgroups of SU(2). We follow [6],[8] for material

on root systems and Lie algebras and [2],[5] for the theory of quiver representations.
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CHAPTER 1

Introduction

Semisimple Lie algebras were first classified by Killing and Cartan. Dynkin then proposed an

invariant defined from the root system of a semisimple Lie algebra, called the Dynkin diagram.

This gave a simpler presentation of the classification as well as capturing certain properties of the

Lie algebras. Similar diagrams had previously been studied by Coxeter and Witt in connection to

root systems and the classification of reflection groups.

Dynkin diagrams have since appeared in many areas of math. A subset of the diagrams, called

simply-laced Dynkin diagrams, has connections to classifying finite subgroups of SU(2), spectral

graph theory, generalized quadrangles (a type of incidence structure), and catastrophes in bifurca-

tion theory. The main focus of this expository paper will be the connection between simply-laced

Dynkin diagrams and the theory of quiver representations. A quiver is a directed multi-graph and a

quiver representation attaches a linear space to each vertex and a linear map to each edge. Gabriel

discovered that the quivers which admit only finitely many indecomposable representations, up to

isomorphism, are precisely the simply-laced Dynkin diagrams. Furthermore, there is a one-to-one

correspondence between these representations and positive roots of the associated root system. The

theory of classifying indecomposable representations for non-simply-laced quivers is more compli-

cated and was studied by Kac.

This paper is meant to be self-contained and only assumes familiarity with the standard undergrad-

uate mathematics curriculum. We start chapter 2 with an axiomatic presentation of root systems

and define Dynkin diagrams as invariants associated with root systems following [6],[8]. We briefly

describe how Dynkin diagrams classify semisimple Lie algebras, although this material will not be

necessary for the latter portions of the paper. In chapter 3, we provide an introduction to quiver

representations and present the problem of classifying indecomposable representations. In chapter

4, we prove Gabriel’s theorem following [2],[5] by using reflection functors and insights from spectral

graph theory. In chapter 5, we discuss generalizations of the theory to other quivers and provide
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applications in the representation theory of algebras and the classification of finite subgroups of

SU(2).
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CHAPTER 2

Root systems, Dynkin diagrams, and semisimple Lie algebras

We will start by introducing root systems and the classification of their Dynkin diagrams. We will

also introduce extended Dynkin diagrams and the Weyl group. Then we will give a brief description

of how Dynkin diagrams classify semisimple Lie algebras. We mostly follow the notes [6] and chapter

4 of [8].

2.1. Root systems and Dynkin diagrams

We adopt the following definition from [6].

Definition 2.1.1. A root system is a finite subset, ∆, of a real inner product space (V, ⟨, ⟩), such

that:

(a) ∆ spans V and 0 /∈ ∆

(b) 2⟨α,β⟩
⟨α,α⟩ ∈ Z for α, β ∈ ∆

(c) If α, β ∈ ∆ and β = cα, then c = ±1

(d) If α, β ∈ ∆, then β − 2⟨α,β⟩
⟨α,α⟩ α ∈ ∆. Notice that if α ∈ ∆, so is −α.

The elements of ∆ are called roots. Given α, β ∈ ∆, the integers, nα,β := 2⟨α,β⟩
⟨α,α⟩ , are called Cartan

integers. Since

nα,β · nβ,α =
4⟨α, β⟩2

|α|2 · |β|2
= 4 cos2(∠(α, β)) (2.1)

is an integer, the only possible values for the angle between α and β are 0, π, π/2, π/3, 2π/3, π/4,

3π/4, π/6, 5π/6. Furthermore, if α, β are not linearly dependent, then cos2(∠(α, β)) < 1 and the

only possible values for nα,β are ±1,±2,±3.

Also observe that for α, β ∈ V , σα(β) := β − 2⟨α,β⟩
⟨α,α⟩ α is the reflection of β through the hyperplane,

α⊥.
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Example 2.1.2. Consider the set ∆ = {±(ei − ej) : 1 ≤ i < j ≤ n + 1} ⊆ Rn+1, for n ≥ 1. One

can check that all the properties of a root system are satisfied. We will call this root system, An. |

Example 2.1.3. Consider the set ∆ = {±(ei + ej),±(ei − ej),±ei : 1 ≤ i < j ≤ n} ⊆ Rn, which

will also turn out to be a root system which we call Bn. Notice that unlike the roots of An, these

root vectors can have different lengths. |

Since roots always come in positive-negative pairs, ±α ∈ ∆, we wish to partition ∆ into a set of

positive and negative roots. This is always possible, but there is no canonical way to do this. It

will turn out the regardless of the choice, the same invariants will arise.

Definition 2.1.4. Given a root system ∆ ⊆ V , fix a v ∈ V such that ⟨v, α⟩ ̸= 0 for all α ∈ V

(which exists since ∆ is finite). Then the positive roots with respect to v are the elements of

∆+ := {α ∈ ∆ : ⟨v, α⟩ > 0},

and the set of negative roots is defined analogously, ∆− = −∆+.

A positive root α ∈ ∆+ is called simple if it is not a sum of two other positive roots. The set of

simple roots will be denoted ∆s. The cardinality of ∆s is called the rank of ∆.

If r is rank of ∆, then the Cartan matrix of ∆ is the r-by-r matrix C := (nα,β)α,β∈∆s

We claim that the rank is independent of choice of positive roots and so is the Cartan matrix (up

to reordering of simple roots), justifying the definition. See [8] for the proof of this statement.

Example 2.1.5. In Example 2.1.2, by choosing v with v1 > v2 > · · · > vn+1 > 0 for all i, we get

∆+ = {ei − ej : i < j} and the simple roots are {ei − ei+1 : 1 ≤ i ≤ n}. Hence the rank is n. The
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Cartan matrix will have entries

Ci,j =


2, if i = j

−1, if |i− j| = 1

0, otherwise

.

Defining v the same way for Bn, yields ∆+ = {ei − ej , ei + ei, ei : 1 ≤ i < j ≤ n} and ∆s =

{e1 − e2, . . . , en−1 − en, en}. Notice that the rank in both cases is the subscript n. |

We can now define the Dynkin diagram of ∆. It will require a choice of positive (and hence simple

roots) and we again refer to [8] to see that the Dynkin diagram is independent of this choice.

Definition 2.1.6. Given a root system ∆ ⊆ V , the Dynkin diagram is a multi-graph, Γ = Γ(∆),

with potentially oriented edges. The vertices of Γ are indexed by ∆s. Given distinct α, β ∈ ∆s,

we draw nα,β · nβ,α edges connecting the corresponding vertices. Furthermore, if α, β have different

lengths then we put an arrow over the edges pointing from the longer root to the shorter one.

Note that since distinct α, β ∈ ∆s are both positive roots, they are linearly independent and so

nα,β · nβ,α = 1, 2, 3 by (2.1). By analysing (2.1), the roots will have the same lengths in the case

when this quantity is 1 and will have different lengths otherwise. A Dynkin diagram with no double

or triple edges will just be an ordinary graph, and is referred to as a simply laced Dynkin diagram.

These will be of greatest importance when considering quiver representations.

Example 2.1.7. The Dynkin diagram of An can be read off the Cartan matrix:

e1 − e2 e2 − e3 en−1 − en en − en+1

,

the path graph with n vertices. Similarly, for Bn with ∆s = {e1 − e2, . . . , en−1 − en, en}, we get

e1 − e2 e2 − e3 en−1 − en en
,
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where the arrows point right since en−1 − en is longer than en. |

Theorem 2.1.8. The root system corresponding to a Dynkin diagram is a direct sum of the root

systems corresponding to each of its connected components, which are also Dynkin diagrams.

Any Dynkin diagram arising from a root system is a union of the following Dynkin diagrams with

the number of roots indicated after the diagram:

• An: |∆| = n(n+ 1)

• Bn, n ≥ 2: |∆| = 2n2

• Cn, n ≥ 2: |∆| = 2n2

• Dn, n ≥ 4: |∆| = 2n(n− 1)

• E6: |∆| = 72

• E7: |∆| = 126

• E8: |∆| = 240

• F4: |∆| = 48

• G2: |∆| = 12

In each case, the subscript indicates the number of vertices which is also the rank of the corresponding

root system. The Dynkin diagrams E6, E7, E8, F4, G2 are called exceptional. The simply laced

Dynkin diagrams are thus unions of An, Dn, En and we call such diagrams ADE-type.

We have already seen that An, Bn have root systems and we need to exhibit the underlying root

systems for the remaining Dynkin diagrams in the above list. The diagram Cn arises from ∆ =

{±(ei − ej),±(ei + ej),±2ei : 1 ≤ i < j ≤ n}, while Dn arises from ∆ = {±(ei − ej),±(ei + ej) :

1 ≤ i < j ≤ n}. The exceptional root systems are more complicated, but can be constructed using
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Proposition 2.3.2.

We will prove the following weaker theorem

Theorem 2.1.9. Any simply laced Dynkin diagram is of ADE-type.

First we will need to better understand simple roots and Cartan matrices.

Lemma 2.1.10. We have the following

1. If α, β ∈ ∆s are distinct, then ⟨α, β⟩ ≤ 0 and hence nα,β ≤ 0.

2. The elements of ∆s form a basis for W .

3. If α ∈ ∆+ is written as a linear combination α =
∑

x∈∆s
nxx, then the nx ∈ N.

Proof. Suppose for contradiction that ⟨α, β⟩ > 0. Then the only possible angles between α, β are

π/3, π/4, π/6, with the ratios between the root lengths being, 1,
√
2,
√
3, respectively. In each case,

we can use property 2.1.1.d to see that β − α ∈ ∆. Then β − α ∈ ∆+ or its negative, α− β ∈ ∆+.

In the first case α = α+ (β −α) a sum of two positive roots, contradicting that α was simple. The

second case is similar.

Since the span of the ∆s contains positive roots and hence all roots, they span W . Suppose there

were a linear dependence of the ∆s,
∑

x∈∆s
nxx = 0. Then we may separate terms with positive

and negative coefficients, nx, yielding P =
∑

nx>0 nxx and N =
∑

nx<0 nxx. Since P +N = 0,

⟨P, P ⟩ = −⟨P,N⟩ =
∑
nx>0

∑
ny<0

nx(−ny)⟨x, y⟩ ≤ 0,

since ⟨x, y⟩ ≤ 0 by the first part. Thus, P = N = 0. Since positive roots were defined as having

positive inner product with some v, we would have ⟨P, v⟩ > 0 if any of the nx > 0. Similarly, we

see that the coefficients of N are zero.

To see the last fact, we just have to write any positive root, α, as a sum of simple roots. If α is not
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simple, it is a sum of two positive roots, β, γ. Now repeat with this process with β, γ. This process

must terminate with a sum of simple roots, since at every level of the algorithm we introduce at

least one new positive root and there is a finite number of these.

Remark 2.1.11. Note that the Dynkin diagram relies only on knowledge of the Cartan matrix.

Similarly, given a Dynkin diagram we can recover the Cartan matrix. First notice that nα,α =

2, determining the diagonal entries. By Lemma 2.1.10, nα,β = 0, if α, β are disconnected and

nα,β = −1, if α, β are connected by a single edge in Γ. If they are connected by 2 (resp. 3) edges,

with α being the shorter root (this information is recorded by Γ), then nα,β = −2 (resp. −3) and

nβ,α = −1. |

Thus, for simply laced Dynkin diagrams, Γ, the Cartan matrix, C = 2I−A, where A is the adjacency

matrix of the ordinary graph Γ. and I is the identity. We have the following important fact about

Cartan matrices.

Proposition 2.1.12. The Cartan matrix, C, of a root system is invertible.

Proof. Consider a vector v ∈ kerC. Let α =
∑

x∈∆s
vxx. Then Cv = 0 implies

0 =
∑
y∈∆s

nx,yvy =
2

⟨x, x⟩
∑
y∈∆s

⟨x, y⟩vy =
2

⟨x, x⟩
⟨x, α⟩

for all x ∈ ∆s. But since the simple roots form a basis for W , this forces α = 0 and by linear

independence of simple roots, v = 0. Thus, kerC = 0 and C is invertible.

This provides a way to rule out certain diagrams from being Dynkin diagrams (which arise from a

root system by definition) by using 2.1.11 to compute the corresponding Cartan matrix and checking

if it is invertible.

Example 2.1.13. The following diagrams, Γ, cannot be Dynkin diagrams of any root system since

the Cartan matrices, C, are not invertible. In particular, we provide a labelling of the vertices

κ ∈ RV (Γ) such that κ ∈ kerC. For simply laced Dynkin diagrams the condition κ ∈ kerC reduces
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to κ being a 2-eigenvector of Γ, i.e. 2κ(x) =
∑

y∼x κ(y), for all x ∈ V (Γ), where the sum is taken

over neighbors of x.

Each of these diagrams, while not being a Dynkin diagram, arise from a Dynkin diagram by adding

an additional vertex (denoted by a blank circle) and are called extended Dynkin diagrams. In

each case, the number of vertices is one more than the subscript

• Ân, n ≥ 2:

1

1 1 1 1

• B̂n, n ≥ 2:

1

1

2 2 2 2

• Ĉn, n ≥ 2:
1 2 2 2 2 1

• D̂n, n ≥ 4:

1

1

2 2

1

1

• Ê6:

1

1

2

2 3 2 1

• Ê7:
1 2

2

3 4 3 2 1

• Ê8:
12

3

4 6 5 4 3 2

• F̂4:
1 2 3 4 2

• Ĝ2:
1 2 3

|
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These examples will be crucial in proving the weaker classification theorem 2.1.9. Consider a subset

F ⊆ ∆s and observe that R⟨F ⟩ ∩∆ ⊆ R⟨F ⟩ is a root system. Properties 2.1.1a-c clearly still hold

and if roots α, β are in the span of F , then so is σα(β), so 2.1.1d holds as well. Thus, any induced

subgraph of a Dynkin diagram is again a Dynkin diagram.

Hence, a Dynkin diagram cannot contain any of the extended Dynkin diagrams as subgraphs.

Theorem 2.1.9 will then follow from the following lemma.

Lemma 2.1.14. If a connected, simply laced diagram, Γ, does not contain any of Ân, D̂n, Ên as an

induced subgraph, then it is one of An, Dn, En.

Proof. Suppose for contradiction Γ had a cycle. Then there would be a shorted cycle consisting

of vertices x1, . . . , xn+1 and the induced subgraph from these vertices will be Ân, a contradiction

(there will be no edges going “across" the induced subgraph by minimality of the cycle). Therefore,

Γ is a tree. Similarly, since Γ does not contain D̂4 as an induced subgraph, all vertices of Γ have

degree ≤ 3. Since Γ does not contain D̂n for n ≥ 5, at most one vertex may have degree 3.

If no vertex has degree 3 then Γ is forced to be a path graph, An, and we are done. Otherwise,

assume Γ has exactly one central vertex of degree 3 and three branches. Then let 2 ≤ a ≤ b ≤ c

denote the lengths of the branches, where the length of a branch is the number of vertices in the

branch, including the central one. We must have a = 2 or else a, b, c ≥ 2 and Γ would contain Ê6.

Then if b = 2, Γ is of the form Dn and we are done. Otherwise, b = 3, since if b > 3, Γ would

contain Ê7. Since Γ may not contain Ê8, the remaining possible values for c = 3, 4, 5, corresponding

to Γ being E6, E7, E8, respectively.

Remark 2.1.15. We saw that the simply laced extended Dynkin diagrams have eigenvalue 2 as a

graph. It turns out that 2 is also the spectral radius of these graphs (note that graphs always have

a real spectra since their adjacency matrices are symmetric). An exercise of Godsil and Royle [3]

actually claims that a connected graph has spectral radius 2, if and only if it is one of the Ân, D̂n, Ên.
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We refer to a math stack exchange post [7] for a sketch of the proof, which bears some similarities

to the proof of Lemma 2.1.14.

Now observe that if Γ′ is a proper induced subgraph of Γ, then A′ = A(Γ′) is a sub-matrix of

A = A(Γ) and hence the spectral radius λ(Γ′) < λ(Γ). This is because the spectral radius of

symmetric A′ is the maximum of |A′x| over unit length x. Hence by appending zeros to x, to get

x̂, we have |A′x| ≤ |Ax̂|. It is a little trickier to see that the spectral radius inequality is strict, but

can be done with the same argument.

A consequence is that graphs of ADE-type, Γ, have spectral radius λ(Γ) < 2. By Lemma 2.1.14,

if Γ is not ADE-type, then it contains an extended Dynkin diagram as a subgraph and hence

has λ(Γ) ≥ 2. Therefore, a connected graph has spectral radius <2, if and only if it one of the

An, Dn, En. As a result, we also get that any proper subgraph Ân, D̂n, Ên is of ADE-type. |

Remark 2.1.16. In [5], it is pointed out that the An, Dn, En are precisely the graphs with three

branches of length 1 ≤ a ≤ b ≤ c, such that 1
a + 1

b +
1
c > 1, where now the path graphs, An, are

included with a = 1. In this context, Ê6, Ê7, Ê8 are precisely the three branch graphs with a, b, c

satisfying 1
a +

1
b +

1
c = 1. The parameters a, b, c will make a return in Section 5.3. |

2.2. Extended Dynkin diagrams from maximal roots

In this section, we mention where the extended Dynkin diagrams introduced in Example 2.1.13

come from, i.e. how the additional vertex is connected to the underlying Dynkin diagram. We will

also see how labellings in Example 2.1.13 naturally arise in this context.

Lemma 2.1.10.3 indicates that there is a partial order on positive roots, with
∑

x∈∆s
nxx ≤

∑
x∈∆s

mxx

if each nx ≤ mx. With respect to this ordering the simple roots are the minimal elements. We call

a root maximal if it is maximal with respect to this ordering.

Proposition 2.2.1. Let ∆ be a root system with a connected Dynkin diagram. Then there is a

unique maximal root, α̂.

11
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We refer to Proposition 4.5.8 in [8] for a proof, which relies on using properties of the associated

simple Lie algebra introduced in 2.4.

We define the extended Dynkin diagram of a root system, ∆, Γ̂(∆), by taking Γ(∆), adding a

vertex corresponding to −α̂, and adding edges the same way as before: drawing n−α̂,x ·nx,−α̂ edges

from −α̂ to x ∈ ∆s, adding an arrow if the roots have different length. Writing α̂ =
∑

x κxx, we

have a distinguished labelling of Γ̂(∆), called the primitive isotropic labelling, κ ∈ RV (Γ̂(∆)),

which has (−α̂)-entry equal to 1 and x-entry equal to κx for x ∈ ∆s. These diagrams turn out to

agree with the ones in Example 2.1.13 and the primitive isotropic labellings agree with the labellings

in the Example as well.

The reason we prefer −α̂ over α̂ is that nα̂,x, nx,α̂ > 0 (see Proposition 4.59 of [8]). But the Cartan

integers of distinct simple roots were negative and so choosing −α̂, which has n−α̂,x, nx,−α̂ < 0, is

more natural when considering the Cartan matrix corresponding to Γ̂(∆).

Example 2.2.2. In the case of An, where ∆+ = {ei − ej : i < j}, we find that the maximal root

is α̂ = e1 − en+1 =
∑n

i=1 ei − ei+1. This root connects to e1 − e2 and en − en+1 by single edges and

so we get Ân with all vertices labelled with a 1. |

It is not by chance that the primitive isotropic labelling, κ ∈ RV (Γ̂(∆)), is in the kernel of the Cartan

matrix, C, derived from Γ̂(∆). The (−α̂)-entry of Cκ is

2 +
∑
x∈∆s

vxn−α̂,x = 2 +
2

⟨α̂, α̂⟩
∑
x∈∆s

κx⟨−α̂, x⟩ = 2− 2
⟨α̂, α̂⟩
⟨α̂, α̂⟩

= 0.

Similarly, for x ∈ ∆s, the x-entry of Cκ is

nx,−α̂ +
∑
y∈∆s

κynx,y =
2⟨x,−α̂⟩
⟨x, x⟩

+
2

⟨x, x⟩
∑
y∈∆s

⟨x, κyy⟩ =
2⟨x,−α̂⟩
⟨x, x⟩

+
2⟨x, α̂⟩
⟨x, x⟩

= 0

and so Cκ = 0.
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2.3. The Weyl group

In this section, we introduce the Weyl group and describe how it helps recover the root system of

a Dynkin diagram from the set of simple roots. As a result, there is a one-to-one correspondence

between Dynkin diagrams and root systems. In the later chapters, the Weyl group will be crucial

in our proof of Gabriel’s theorem.

Definition 2.3.1. Given a root system, ∆ ⊆ V , the corresponding Weyl group, W =W (∆), is a

subgroup of GL(V ) generated by the reflections σα, for α ∈ ∆.

Notice that by property 2.1.1.d, W sends roots to roots and hence is a subgroup of the symmetric

group S∆. So W is finite. We have the additional useful properties

Proposition 2.3.2. If W is the Weyl group of ∆, with ∆s a set of simple roots, then:

1. W is generated by the simple reflections, σx for x ∈ ∆s

2. ∆ =
⋃
x∈∆s

W · x

Proof. We follow the proofs from [4]. We begin by proving a stronger version of (2). We claim that

if α ∈ ∆, then there is a simple root x ∈ ∆s and a series of simple reflections carrying x to α.

Without loss of generality, we may take α to be positive, since otherwise we may take a series of

reflections carrying x to −α and then pre-compose with σx to carry x to α. Writing α =
∑

y∈∆s
nyy,

we induct on the height,
∑

y∈∆s
ny ∈ N. If the height is 1, then α is simple and we are done.

Otherwise, the height is at least 2 and by 2.1.1.c, at least two of the ny > 0. We can pick a simple

root z so that ⟨z, α⟩ > 0. Such a z exists, since otherwise ⟨y, α⟩ ≤ 0 for all simple roots, y, and

|α|2 =
∑
y∈∆s

ny⟨y, α⟩ ≤ 0,

a contradiction. Observe that applying σz to α for this choice of z has no effect on the coefficients

ny, y ̸= z, but changes nz to becomes nz − 2⟨z,α⟩
⟨z,z⟩ < nz. The root is still positive since the height
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being ≥ 2 implies that ny > 0 for some y ̸= z. Hence, σzα has a lower height than α, completing

the inductive argument. This in fact shows that we can move from x to α ∈ ∆+ through a sequence

of positive roots.

To prove (1), we need to show that σα for α ∈ ∆, is a product of simple reflections. By the

previous argument, we can write α = w · x for x ∈ ∆s and w a product of simple reflections. Then

σα = σw·x = w · σx · w−1, a product of simple reflections. To see that σw·x = w · σx · w−1, one may

check that transformations agree on w · x and vectors orthogonal to w · x.

As a result, given a Dynkin diagram, Γ, with vertex set, V , we may recover the root system from

the simple roots, i.e. describe which labellings of vertices of Γ, v ∈ RV , correspond to roots by

considering the formal sum
∑

x∈V vxx.

To do so, we start with a standard basis vector, ϵx ∈ RV and repeatedly apply various σy for y ∈ V ,

recording the vectors we find, until we generate all roots. Once our set of roots is closed under

applying the σy, we pick a new ϵx and repeat. Given a v ∈ RV , the reflection σy is explicitly defined

as

(σy(v))(x) =


vx, y ̸= x

vy −
∑

z vzny,z, y = x

(2.2)

where the ny,z can be recovered from the Dynkin diagram. In the case of simply laced Dynkin

diagrams, this reduces to

(σy(v))(x) =


vx, y ̸= x

−vy +
∑

z∼y vz, y = x

. (2.3)

Example 2.3.3. In the case of An, the Weyl group W ∼= Sn+1, by identifying the simple reflections,

σei−ei+1 , with the elementary transpositions, si = (i i+1). Indeed, both systems of generators consist

of order two elements and satisfy the braid relations, sisi+1si = si+1sisi+1 and si, sj commute when

|i− j| > 1.
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In the case special case of A2, we show the resulting group action on the roots. Call σe1−e2 = σ1

and σe2−e3 = σ2. Going counterclockwise starting with the top left labelling, these correspond to

the roots −(e2 − e3), e2 − e3, e1 − e3, e1 − e2, −(e1 − e2), −(e1 − e3).

1 1

0 10 −1

−1 −1

−1 0 1 0

σ1

σ2

σ2

σ1

σ2

σ1

|

2.4. Application to semisimple Lie algebras

Root systems arise in the study of complex semisimple Lie algebras and help classify them. We will

provide a brief exposition here without proving any of the details. We follow Chapters 1 through 4

of [8].

Recall that a complex Lie algebra, g, is semisimple, if it has no non-trivial solvable ideals or

equivalently if it is a direct sum of simple Lie algebras (Lie algebras with no non-trivial ideals).

Proposition 2.4.1. Let g be a complex semisimple Lie algebra. Then it contains a nilpotent sub-

algebra, called the Cartan subalgebra, h, such that the normalizer Ng(h) = h. Furthermore, it is

unique up to inner automorphism.

Now we are able to define roots in the context of Lie algebras.
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Definition 2.4.2. Given g with Cartan subalgebra h and a dual vector α ∈ h∗, we call

gα = {X ∈ g : [H,X] = α(H)X, ∀H ∈ h}

the root space of α, and

∆ = {α ∈ h∗\0 : gα ̸= 0}

are called the roots of g with respect to h.

In a sense, the roots serve as generalized eigenvalues of h acting on g by the bracket, with the root

space resembling an eigenspace. There is a decomposition of g in the sense of vector spaces akin to

diagonalization:

g = g0 ⊕
⊕
α∈∆

gα = h⊕
⊕
α∈∆

gα

At present it is not clear, how ∆ forms a root system as a subset of a C-space h∗ with no given

inner product. Without going into too much detail, there is a natural inner product on g called the

Killing form, given by B(X,Y ) = tr(adX ◦ adY ), where adX = [X,−]. One can take a certain

real form of h, hR, with h∗R inheriting B as a real inner product. It then turns out that ∆ ⊆ h∗R is

indeed a root system.

Thus, we can define a Dynkin diagram corresponding to g, Γ(g).

Proposition 2.4.3. Let g be a semisimple Lie algebra with Cartan subalgebra h. Then:

1. The Dynkin diagram Γ(g) is independent of choice of Cartan subalgebra, h

2. Two semisimple Lie algebras, g, g′ are isomorphic, if and only if their diagrams Γ(g),Γ(g′)

agree

3. Every Dynkin diagram in Theorem 2.1.8 is the Dynkin diagram of some Lie algebra

4. g is simple, if and only if Γ(g) is connected
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5. The simple summands of g =
⊕

i gi correspond to the connected components of Γ(g)

6. The outer automorphisms of g are in one-to-one correspondence with automorphisms of

Γ(g)

We now list the Lie algebras corresponding to the Dynkin diagrams from the previous section

• An: sl(n+ 1,C) = {A ∈Mn+1(C) : tr(A) = 0}

• Bn: so(2n+ 1,C) = {A ∈M2n+1(C) : A+AT = 0}

• Cn: sp(n,C) = {A ∈M2n(C) : AJ + JAT = 0}, where J =
(

0 −In
In 0

)
• Dn: so(2n,C) = {A ∈M2n(C) : A+AT = 0}.

The exceptional Lie algebras are again harder to describe. In the case of G2, we may take the

automorphism group of the Cayley numbers and consider the Lie algebra corresponding to this Lie

group, which will have root system, G2 [8].

We briefly mention the representation theory of semisimple Lie algebras as presented in [8]. A

representation of semisimple complex Lie algebra, g, is a C-linear map π : g → GL(V ) for

finite-dimensional V , such that π([g, h]) = π(g)π(h) − π(h)π(g). Much like root spaces, are the

“eigenvectors" of Cartan subalgebra h acting on g, the weight space of µ ∈ h∗, is given by h acting

on Ck, via π:

Vµ = {x ∈ V : π(H)x = µ(H)x, ∀H ∈ h}

and the weights of π are the µ for which Vµ is non-zero. Let Wπ be the set of weights. One gets

the following decomposition analogous to the decomposition of g:

V =
⊕
µ∈Wπ

Vµ,

note that unlike the roots, weights can be zero, and the weight space, Vµ, can have dimension bigger

than 1.
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As it turns out, all the weights can be viewed as elements of real form h∗R. Then W = {µ ∈ h∗R :

µ(Xα) ∈ Z, α ∈ ∆} is called the weight lattice, where Xα is a fixed representative of gα We have

the following theorem classifying irreducible representations of g. We have a partial order given on

W , by taking µ1 ≤ µ2 if µ1(Xα) ≤ µ2(Xα) for all α ∈ ∆. Then the following theorem classifies

irreducible representations of π.

Theorem 2.4.4. Let g be a semisimple Lie algebra and let π be an irreducible representation. Then:

1. The weights µ ∈Wπ are elements of W .

2. There is a unique maximum element with respect to the partial order, called the highest

weight

3. Two irreducible representations are isomorphic, if and only if, they have the same highest

weight

4. µ ∈W is the highest weight of some irreducible representation, if and only if, it is a dominant

weight, that is an element of W with the property µ(Xα) ≥ 0 for all α ∈ ∆+.

5. The dominant weights, µ ∈W , are sums of simple roots ∆s.

As an example, if g is simple, then π : g → GL(g), given by π(g)h = [g, h] is an irreducible

representation. The weights are just the roots and zero, Wπ = ∆ ∪ {0}. The maximal root α̂,

defined in Proposition 2.2.1, is the highest weight of this representation.

We saw in this section, that any root system ∆, can be realized as the roots of some semisimple

g. We also saw how certain sums of simple roots, the dominant weights, classify all the irreducible

representations of g. We will in the next chapter, how quiver representations are classified by the

positive roots.
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CHAPTER 3

Quiver representations

3.1. Basic terminology

We follow the definitions and notation of [2].

Definition 3.1.1. A quiver, Q = (V,E, h, t) is a directed multi-graph with loops allowed. V denotes

the set of vertices, E denotes the set of edges (also called arrows), and h, t : E → V return the head

and tail of an arrow, a, depicted in the diagram below

ta ha
a

Arrows will be denoted by a, and vertices by x, y. The central objects of interest will be quiver rep-

resentations. We denote by Γ(Q), the underlying graph of Q: the undirected multi-graph obtained

by forgetting arrow orientation.

Definition 3.1.2. A representation of a quiver Q = (V,E, h, t), π, is a map that attaches a

C-space, π(x) to each vertex x ∈ V , and a C-linear map, π(a) : π(ta) → π(ha) to each arrow a ∈ E.

The dimension vector, dim(π) ∈ NV , of a representation, is a labelling of vertices attaching

dimC(π(x)) to each x ∈ V .

A morphism, ϕ, of quiver representations, π, ρ, of Q, attaches a C-linear map ϕ(x) : π(x) → ρ(x)

for each x ∈ V , such that ϕ(ha)π(a) = ρ(a)ϕ(ta) for all a ∈ E. With these morphisms, quiver

representations of a fixed Q form a category, Rep(Q). An isomorphism in this category can be

viewed as a change of basis at each vertex, when the spaces π(x) = ρ(x), agree.

It turns out this category is equivalent to the category of modules over a certain algebra, called

the path algebra, CQ. Thus, quiver representations are in one-to-one correspondence with algebra

representations of a certain algebra, motivating their name.
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Definition 3.1.3. The path algebra of Q, CQ, is a C-algebra generated by directed paths in Q, p,

where we allow for empty paths at a vertex, with empty paths denoted ex. The product of two paths,

p, q, is given by concatenation pq if the head of q agrees with the tail of p, and is zero otherwise.

The algebra is associative and unital with 1 =
∑

x∈V ex.

To see the equivilance of categories, take a CQ-module, M , and define corresponding quiver rep-

resentation, π, by letting π(x) = ex ·M and π(a) = La|ex·M , where La is left multiplication by a,

viewed as an element of CQ (a is a path consisting of a single arrow). To reverse the procedure,

we define M =
⊕

x π(x). The action of a is induced by π(a) viewed as a map between appropriate

direct summands of M . The action can be extended to longer paths, p = ak · · · a1, by composing

π(ak) ◦ · · · ◦ π(a1).

Remark 3.1.4. Notice that a path algebra, CQ, is finite dimensional, if and only if there is a finite

number of paths in Q, which is equivalent to Q having no directed cycles. |

Just like in representation theory, one may consider explicit matrix representations instead of ab-

stract ones. We may do the same for Q. Within the category, Rep(Q), every representation is

isomorphic to some matrix representation and so we may as well restrict our attention to these.

Definition 3.1.5. A matrix representation of Q, of dimension α ∈ NV , is an element π ∈

Repα(Q) =
∏
a∈EMα(ha),α(ta)(C), where Mk,l(C) denotes the set of k-by-l matrices over C. This is

viewed as a representation of Q, with π(x) = Cα(x)

Example 3.1.6 (Jordan quiver). Consider the quiver, L, consisting of a single vertex and a single

arrow. We will call Γ(L) =: Â0, since it shares many similarities with the extended Dynkin diagram

family, Ân, but does not fit in well with our earlier discussions (it is not simply laced and is not the

extended Dynkin diagram of a root system).

A matrix representation of dimension n, is just some n-by-n matrix, A, attached to the arrow. An

isomorphism of the matrix representations corresponds to a change of basis at the vertex, and so the

isomorphism classes of representations of L are in one-to-one correspondence with Jordan normal
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forms.

Cn
A

The path algebra in this example is, CL ∼= C[a], isomorphic to the algebra of polynomials in

indeterminant a. |

Example 3.1.7. Consider the following quiver, R, consisting of two vertices connected by a single

arrow. Now isomorphism allows us to do a change of a basis at the domain and codomain, so the

isomorphism classes of representations of R are in one-to-one correspondence with Smith normal

forms. Notice that there are only finitely many possible m-by-n Smith normal forms, unlike in the

previous example, where there are infinite n-by-n Jordan normal forms.

Cn Cm
A

The path algebra in this example is, CR ∼= {
(∗ ∗
0 ∗
)
∈ M2(C)}, isomorphic to the algebra of upper

triangular 2-by-2 matrices. |

The isomorphism classes in the set of matrix representations Repα(Q) are captured nicely by the

following group action.

Definition 3.1.8. The group GLα :=
∏
x∈V GLα(x)(C) acts on Repα(Q). If ϕ ∈ GLα and π ∈

GLα(x)(C), then

(ϕ · π)(a) = ϕ(ha) ◦ π(a) ◦ ϕ(ta)−1,

i.e. the matrices ϕ(x) ∈ GLα(x)(C) describe a change of basis at Cα(x). There is a natural corre-

spondence between isomorphism classes of α-dimensional representations of Q and GLα-orbits on

Repα(Q).
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3.2. Simple and indecomposable representations

From the equivilance with the category of CQ-modules, the notions of subrepresentation, direct

sum, simple representations, and indecomposable representations carry over to the category of

quiver representations.

Definition 3.2.1. Let π, ρ, ψ be representations of Q. Then

• ρ is a subrepresenation of π, denoted ρ ≤ π, if ρ(x) ≤ π(x) for all x ∈ V and for all a ∈ V ,

ρ(a) = π(a)|ρ(x)

• π is a direct sum of ρ, ψ, denoted π = ρ ⊕ ψ, if π(x) = ρ(x) ⊕ ψ(x) for all x ∈ V and

π(a) = ρ(a)⊕ ψ(a) for all a ∈ E

• π is simple, if it has no proper, non-trivial subrepresentations

• π is indecomposable, if it is not a direct sum of proper, non-trivial subrepresentations

A simple representation is always indecomposable. However, unlike in the case of complex repre-

sentation theory of groups and semisimple algebras, path algebras are often not semisimple and so

indecomposable representations need not be simple. For brevity, we will write indecomp iso classes

in place of isomorphism classes of indecomposable representations.

Example 3.2.2. Consider L from Example 3.1.6. A Jordan normal form breaks down into a direct

sum of its Jordan blocks so an indecomposable representation can only consist of a single Jordan

block. Hence, the indecomp iso classes correspond with k-by-k Jordan blocks Jk(λ) for λ ∈ C.

If k > 1, then the standard basis vector, e1, is an eigenvector of Jk(λ) and spans a subrepresentation

with the restricted arrow map being multiplication by λ. Hence, the simple iso classes correspond

to the 1-dimensional representations, J1(λ).

Consider R from Example 3.1.7 and matrix representation A ∈Mm,n(C). Then we decompose into

three subrepresentations: a map from ker (A) to 0, a map from 0 to im (A)⊥, and an invertible
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map from ker (A)⊥ to im (A). The first two representations break down further into a direct sum of

representations C 0→ 0 and 0
0→ C, respectively. After a change of basis of the domain and codomain,

the invertible map becomes the identity and so breaks down into a sum of representations, C id→ C.

Unlike L, which has infinite indecomp iso classes and simple iso classes, R only has 3 indecomp iso

classes

C 0→ 0 0
0→ C C id→ C

Out of the three of them only the first two are simple, since 0
0→ C is a subrepresentation of C id→ C

(but C id→ C is still indecomposable since it is not a direct sum of 0 0→ C and C 0→ 0). |

Example 3.2.2 leads to the following question: When does a quiver have a finite number of simple

iso classes (resp. indecomp iso classes)? In the case of simple iso classes, the answer is quite

straightforward.

Proposition 3.2.3. A quiver, Q, has finite simple iso classes, if and only if it has no directed cycles.

Furthermore, if Q has no directed cycles, then the simple iso classes are given by representations Sx

for x ∈ V , where Sx attaches C to x, 0 to all other vertices, and the zero map to all edges.

Proof. If Q has a directed cycle, p, at x ∈ V . Consider the representation, πλ, for λ ∈ C×, which

attaches a copy of C to the vertices of p and attaches λ · id to each edge of p, with all other spaces

and maps being set to zero. One can easily check that the representation is simple and that the πλ

are not isomorphic for distinct λ ∈ C×.

Now suppose that Q has no directed cycle. Clearly, the Sx are simple, pairwise non-isomorphic

representations. If π is simple, we may without loss of generality restrict to the induced subquiver,

Q′, on the supported vertices, V ′ = {x ∈ V : π(x) ̸= 0}. Since Q′ still has no directed cycle, there

is a sink x, i.e. a vertex with no outgoing edges. Then Sx ≤ π forcing π = Sx, since π is simple.

Thus, there are finitely many simple iso classes.

The case of indecomposable representations is more complicated and beautiful and will be the focus
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of the following chapter. One important property of indecomposable representations is demonstrated

by a theorem of Krull-Remak-Schmidt presented as Theorem 1.7.4 in [2], which states that the

indecomp iso classes are the building blocks of all quiver representations.

Theorem 3.2.4 (Krull-Remak-Schmidt). Every quiver representation π is a finite direct sum of

indecomposable representations, π =
⊕

i πi, unique up to isomorphism and re-ordering of the πi.
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CHAPTER 4

Gabriel’s theorem

4.1. The statement

We call a quiver, Q, with finitely many indecomp iso classes, finite type. Let Ind(Q) denote the

indecomp iso classes of Q.

Theorem 4.1.1 (Gabriel). Let Q be a connected quiver with underlying graph Γ. Then

(a) Q has finite type, if and only if Γ is one of the An, Dn, En

(b) Furthermore, if Γ is one of these simply laced Dynkin diagrams, then dim : Ind(Q) → NV

is a bijection between indecomp iso classes and the set of positive roots ∆+.

Here, we identify a dimesnion vector v ∈ NV with a positive root α ∈ ∆+, as α =
∑

x∈V vx x, since

the vertices of Γ can be interpreted as simple roots of the associated root system. In particular, the

second part of the theorem says that if there is an indecomposable representation with a certain

dimension vector v, it is unique up to isomorphism. Notice also that the theorem does not depend

on the orientation of the arrows of Q.

Example 4.1.2. Recall the case of A2 in Example 2.3.3. The positive roots, e1−e2, e2−e3, e1−e3,

we encounter in the figure arise from the labellings,
1 0

,
0 1

,
1 1

. These are precisely the

dimension vectors of the 3 indecomp iso classes seen in 3.2.2.

|

4.2. Tits form

To show the forward direction of Theorem 4.1.1.a, we introduce the following bilinear and quadratic

forms.
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Definition 4.2.1. The Euler form of Q = (V,E, h, t) is a bilinear form on RV ,

⟨α, β⟩Q :=
∑
x∈V

α(x)β(x)−
∑
a∈E

α(ta)β(ha)

The Tits form of Q = (V,E, h, t) is the corresponding quadratic form on RV ,

BQ(α) := ⟨α, α⟩Q =
∑
x∈V

α(x)2 −
∑
a∈E

α(ta)α(ha).

The Cartan form, is the symmetrized bilinear form (α, β)Q = ⟨α, β⟩Q + ⟨β, α⟩Q

There is a motivation for this definition that comes from homological algebra. The two sums

involved arise from the Hom and Ext functors, respectively. See Chapter 2 of Derksen and Weyman

[2]. Notice that the Tits and Cartan form do not depend on orientation of edges, while the Euler

form does.

The following is Lemma 4.1.3 from [2]

Lemma 4.2.2. If Q has finite type, then BQ is positive-definite.

Proof. We begin by showing that BQ(α) ≥ 1 for all non-zero α ∈ NV . Recall, the group action

defined in 3.1.8 and consider the dimension of the varieties GLα, Repα(Q). We have dim(GLα) =∑
x∈V α(x)

2 and dim(Repα(Q)) =
∑

a∈E α(ta)α(ha). Hence, BQ(α) = dim(GLα)−dim(Repα(Q)).

By Theorem 3.2.4, if Q has finite indecomp iso classes, then there are only finitely many ways to

sum them to get an α-dimensional representation. Hence, there are finitely many α-dimensional

iso classes and Repα(Q) has finitely many orbits under the GLα action. Then one of these orbits

must have full dimension in Repα(Q), say GLα · π. Then by the orbit-stabilizer theorem for linear

algebraic groups

BQ(α) = dim(GLα)− dim(Repα(Q)) = dim(GLα)− dim(GLα · π) = dim((GLα)π) ≥ 1 (4.1)
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The stabilizer has to have dimension at least 1 since it contains the subgroup {
∏
x∈V λ · idα(x) : λ ∈

C×} which acts trivially on all elements of Repα(Q).

Then for non-zero α ∈ ZV , let α′ = NV be the the vector with entries replaced by their absolute

value. Then BQ(α) ≥ BQ(α
′) ≥ 1 by the definition of the Tits form. Considering non-zero α ∈ QV ,

one can scale by a large enough factor R so that Rα ∈ ZV and so BQ(α) ≥ 1/R2 > 0. Finally, by

continuity we get that BQ is positive definite on RV .

Observe, that if the underlying graph, Γ, is simply laced (has no multi-edges or loops), then BQ(α) =

αT (I − 1
2A)α, where A is the adjaceny matrix of Γ. Thus, BQ fails to be positive-definite if Γ has

as an eigenvalue ≥ 2. Then Ân, D̂n, Ên, introduced in Example 2.1.13, cannot be the underling

graphs of a finite-type Q, since their primitive isotropic labellings are 2-eigenvectors and thus make

BQ vanish. It follows by Remark 2.1.15, that BQ is positive-semidefinite for these extended Dynkin

diagrams, since their spectral radii are equal to 2.

We introduced Â0 in Example 3.1.6. Similarly, we introduce the multi-graph Â1 with two vertices

connected by two edges, which was omitted earlier since it is not the extended Dynkin diagram of

root system A1. Then we may view the Ân, n ≥ 0, as cycle graphs on n+ 1 vertices. By labelling

all vertices 1, the Tits form, BQ, vanishes for these examples as well.

Lemma 4.2.3. If BQ is positive definite on Q, then it is also positive definite on any subquiver Q′.

Proof. If α′ ∈ RV (Q′) is non-zero, then we may extend t to α ∈ RV (Q) by appending zeros. From

the definition of the Tits form it easily follows that BQ′(α′) ≥ BQ(α) > 0 and so BQ′ is positive-

definite.

Lemma 4.2.3 implies that if Q has finite type, Γ(Q) cannot contain any of Ân, D̂n, Ên as subgraphs.

Since it doesn’t contain Â0, there are no loops and since it doesn’t contain Â1, there are no double

edges. Thus, the graph Γ(Q) is simply laced. Combined with Lemma 2.1.14, we see that Γ(Q) must

be one of the An, Dn, En, proving the forward direction of Theorem 4.1.1.a.
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4.3. Reflection functors

Throughout this section the underlying graph of Q is one of the An, Dn, En. Proposition 2.3.2 tells

us that the set of positive roots may be generated from the simple ones by applying the Weyl group

action. In the same way, we hope to construct the indecomp iso classes corresponding to various

positive roots from the simple representations, Sx, for x ∈ V , which correspond to the simple roots.

Let ϵx := dim(Sx), the standard basis vectors. We thus wish to mimic the action of the Weyl group

at the level of representations.

For x ∈ V , let fx(Q) denote the quiver with all arrows at x reversed. If a is an arrow, we will denote

the reversed arrow by a.

Definition 4.3.1. Suppose Q has a sink at x, with incoming arrows a1, . . . , ak. Then the reflection

functor C+
x : Rep(Q) → Rep(fx(Q)) is defined as follows. If π ∈ Rep(Q) and π′ = C+

x (π), then

let

ϕ :
⊕
i

π(tai) → π(x), ϕ(v1, . . . , vk) :=
∑
i

π(ai)vi

and define π′(x) = ker (ϕ) ⊆
⊕

i π(tai) and π′(ai) : ker (ϕ) → π(tai) to be the projection onto the

i-th component of
⊕

i π(tai). For the remaining vertices, y ̸= x, and remaining arrows, a ̸= ai,

define π′ to agree with π.

Analogously, if Q has a source at x, with outgoing arrows, a1, . . . , ak, we can define C−
x : Rep(Q) →

Rep(fx(Q)). We again define π′ = C−
x (π) to agree with π away from x and the arrows ai. Let

ψ : π(x) →
⊕
i

π(hai), ψ(v) = (π(a1)v, . . . , π(ak)v)

and define π′(x) = coker (ψ) and π′(ai) : π(hai) → coker (ψ) to be projection mod im (ψ).

We will see that these two functors behave like the simple reflections, σx, of the Weyl group. The

following is given as Theorem 4.3.9 in [2].

Proposition 4.3.2 (Bernstein-Gelfand-Ponomarev). Let x be a sink of Q, and π be an indecom-
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posable representation with dim(π) = α. Then

(a) π ∼= Sx, if and only if C+
x (π) = 0. In this case, α = ϵx and σx(α) = −ϵx.

(b) If π��∼=Sx, then C+
x (π) is indecomposable with dim(C+

x (π)) = σx(α). Furthermore,

C−
x (C

+
x (π))

∼= π.

(c) The analogous statements hold with the roles of C−
x and C+

x switched, if Q instead had a

source at x.

Proof. If π ∼= Sx, then the kernel of the map ϕ is trivial and so C+
x (Sx) = 0. Conversely, if

C+
x (π) = 0, then for y ̸= x, π(y) = 0, which forces all the arrows to have zero maps. Then

π(x) = Cn for some n. Since π is indecomposable, n = 1 and π ∼= Sx.

Now suppose π��∼=Sx, then we claim that ϕ is onto. Otherwise, π(x) = imϕ⊕ (imϕ)⊥. Let ρ be the

subrepresentation of ϕ, with π(x) replaced by im (ϕ) (we just restrict the codomain of the maps

π(ai)). Let τ be the subrepresentation, with τ(x) = (imϕ)⊥ and all other τ(y) = 0. Then π = τ⊕ρ.

Since we supposed for contradiction that ϕ was not onto, τ ̸= 0 and we cannot have ρ = 0 since

otherwise π = τ would be forced to be Sx. This contradicts the fact that π is indecomposable.

Thus, ϕ is onto and by rank-nullity theorem

dim(C+
x (π)(x)) = dim(kerϕ) = dim

(⊕
i

π(tai)

)
− dim(imπ) =

∑
y∼x

α(z)− α(x) = σx(α)(x)

where the last equality follows from (2.3). Since the spaces at the other vertices are unchanged,

dim(C+
x (π)) = σx(α).

Now we show C−
x (C

+
x (π)) = π. Let π′ = C−

x (C
+
x (π)). It agrees at vertices and arrows away from

x. At x, the space becomes

π′(x) = coker

(
kerϕ

ψ
↪→
⊕
i

π(tai)

)
∼=

⊕
i π(tai)

ker
(⊕

i π(tai)
ϕ→ π(x)

) ∼= imϕ = π(x).
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For vi ∈ π(tai), where π(tai) may be identified as a subspace of
⊕

i π(tai),

π′(ai)(vi) = vi + kerϕ

which is identified by the first isomorphism theorem with ϕ(vi) = π(ai)vi ∈ imϕ = π(x). Hence

π′(ai) is identified with π(ai) and π′ ∼= π.

Now suppose for contradiction that C+
x (π) = ρ1 ⊕ · · · ⊕ ρt is decomposable for ρi simple with

t > 1. Note that none of the ρi may be isomorphic to Sx, since this would correspond to a non-zero

vector v ∈ kerϕ with projections onto all π(tai) components being zero. Then π = C−
x (C

+
x (π)) =⊕

iC
−
x (ρi) a sum of non-zero subrepresentations since none of the ρi are Sx. This contradicts, the

fact that π was indecomposable. Part (c) follows by similar reasoning.

Unlike with the elementary reflections we must be careful when applying a series of the reflection

functors, C+
x , C

−
x , since they can only be applied when x is a sink (resp. source). This is because

the σx, were able to send positive roots to negative ones. However, whenever applying C±
x would

result in a representation with a negative dimension vector, it will instead send the representation

to zero. Since we reverse arrows as we apply these functors, we are led to the following definition.

Definition 4.3.3. A sequence of sinks (resp. sources), s = (x1, . . . , xk) ∈ V (Q), is admissible if

x1 is a sink (resp. source) of Q and for i > 1, xi is a sink (resp. source) of fxi−1 ◦ · · · ◦ fx1(Q).

We have the following simple corollary of Proposition 4.3.2, given as Lemma 4.4.2 in [2].

Corollary 4.3.4. Let s = (x1, . . . , xm) be an admissible sequence of sinks of Q and let Q′ = fxm ◦

· · · ◦ fx1(Q). Let C+
s : C+

xm · · ·C+
x1 : Rep(Q) → Rep(Q′) and C−

s : C−
x1 · · ·C

−
xm : Rep(Q′) → Rep(Q).

Then

(a) M := {C−
x1 · · ·C

−
xi−1

(Sxi) : i} consists of indecomposable representations of Q

M′ := {C+
xm · · ·C+

xi+1
(Sxi) : i} consists of indecomposable representations of Q′

(b) For π ∈ Ind(Q), C+
s (π) is zero if π ∈ M. Otherwise, C+

s (π) is indecomposable and
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C−
s (C

+
s (π)) = π. The analogous statement holds for C−

s and M′.

(c) C+
s induces a bijection between Ind(Q)\M and Ind(Q′)\M′, with inverse is given by C−

s .

Now recall that we are assuming Q is one of An, Dn, En and hence Γ(Q) is a tree and cannot have

directed cycles. Nevertheless, we have the following more general statement.

Proposition 4.3.5. If Q has no directed cycles, then there exists and admissible sequence of sinks,

(x1, . . . , xn), without repeats, such that V (Q) = {x1, . . . , xn}

Proof. We begin by topologically sorting V (Q). That is we label the vertices x ∈ V (Q),

x1, . . . , xn such that whenever there is an arrow from xi to xj , i > j. We do this as follows.

Since Q has no directed cycles, it has a sink; call it x1. Then remove x1 and all of its arrows from

Q. This quiver is again acyclic and hence has a sink; call it x2. Proceed this way until all the

vertices have been given an index. If there was an arrow from x to y, then it is not possible for x

to be a sink before y has been removed and so the index of y is lower than that of x.

We claim that x1, . . . , xn is an admissible sequence of sinks. We have that x1 is a sink of Q. We

need to show for all i > 1, xi is a sink of fxi−1 ◦ · · · ◦fx1(Q). For all xj , with j > i, an arrow between

xi, xj , must be pointing from xj to xi in Q and is not flipped by any of the fx1 , . . . , fxi−1 . Now

consider xj with j < i. An arrow between xi, xj , was pointing from xi to xj in Q, but got flipped by

fxj and so is pointing away towards xi in fxi−1 ◦ · · · ◦ fx1(Q). Hence all arrows of fxi−1 ◦ · · · ◦ fx1(Q)

at xi point inwards and xi is a sink.

Since each edge will be flipped exactly twice when applying fxn , . . . , fx1 , we have Q = fxn · · · fx1(Q).

The corresponding functors C+ := C+
xn · · ·C

+
x1 , C

− := C−
x1 · · ·C

−
xn from Rep(Q) to itself are called

the Coxeter functors. They are independent of choice of admissible sink sequences up to natural

equivilance (we refer to Lemma 4.4.6 of [2]).
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4.4. Final steps

We are now ready to finish off the proof of Theorem 4.1.1. It is sufficient to prove part (b), since it

implies the reverse direction of part (a). We need the following lemma

Lemma 4.4.1. Let (x1, . . . , xn) be an admissible sequence of sinks for Q and define w = σxn . . . σx1,

which we will call the Coxeter element of the Weyl group, W . Then

(a) If α ∈ RV (Q) is fixed by w, then α = 0

(b) For non-zero α ∈ RV (Q), there exists a k ≥ 0 so that wk(α) has a negative entry.

Proof. Suppose non-zero α is fixed by w. As we apply the σxi , the only time the value α(xj) may

change is when we apply σxj . Thus, if α is fixed, then for all j

α(xj) = −α(xj) +
∑
xi∼xj

α(xi)

by (2.3) and so α is a 2-eigenvector of Γ(Q). But this is a contradiction, since Γ(Q) is one of the

An, Dn, En.

For part (b), w has finite order since it is in the Weyl group of Γ(Q), which is finite. Say the order

is m. Then α+wα+ · · ·+wm−1α is fixed by w and hence must be zero. If α has a negative entry

we are done and otherwise it must have a positive entry. Then 0 = α+ wα+ · · ·+ wm−1α implies

that one of the wkα has a negative entry.

Remark 4.4.2. The element w, may be defined for any ordering of vertices, and not just an

admissible one. In any case, the order of w, called the Coxeter number, is independent of ordering.

It turns out that for any root system, ∆, the order of ∆ equals the rank of the root system times

the Coxeter number of its Weyl group. See Corollary 3.32 of [5]. |

Let Ind(Q) denote the set of indecomp iso classes of Q. We complete the proof of Gabriel’s theorem
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Proposition 4.4.3. The map dim : Ind(Q) → ∆+ is a bijection.

Proof. First, we need to check that the dimension vector of any indecomposable representation, π,

indeed corresponds to a positive root. Let α = dim(π) and let k be minimal such that wk(α) has a

negative entry, which exists by Lemma 4.4.1. Clearly, k > 0 since α has no negative entries. Then

let j be minimal such that σxj · · ·σx1(σk−1(α)) has a negative entry. Then σxj−1 · · ·σx1(σk−1(α))

has all positive entries and by Proposition 4.3.2 and Corollary 4.3.4, ρ = C+
xj−1

· · ·C+
x1(C

+)k−1(π) is

indecomposable, but, C+
xj (ρ) = 0. Hence ρ ∼= Sxj . Additionally, π ∼= (C−)k−1(C−

x1 · · ·C
−
xj−1

)(Sxj ).

Hence,

α = dim(C−)k−1(C−
x1 · · ·C

−
xj−1

)(Sxj ) = w−(k−1)σx1 · · ·σxj−1(ϵxj ) ∈ ∆,

a positive root since α is a dimension vector.

If α ∈ ∆+, then take k minimal and j minimal as before. Then since σxj · · ·σx1(σk−1(α)) has a

negative entry it is a negative root, but only differs from positive root σxj−1 · · ·σx1(σk−1(α)) at a

single entry. Hence, all entries besides the xj-entry are zero and σxj−1 · · ·σx1wk−1(α) = ϵxj . Then

defining π = (C−)k−1(C−
x1 · · ·C

−
xj−1

)(Sxj ) ∈ Rep(Q), we have

dim(π) = w−(k−1)σx1 · · ·σxj−1(ϵxj ) = α

gives an indecomposable representation of dimension α.

Let ρ be another indecomposable α-dimensional representation, possibly not isomorphic to π.

The sequence of simple reflections, σxi , corresponding to the sequence of reflection functors in

C+
xj−1

· · ·C+
x1(C

+)k−1(π) ∼= Sxj , never map a dimension vector to a negative root, starting with α.

As a result, Corollary 4.3.4.b implies, that C+
xj−1

· · ·C+
x1(C

+)k−1(ρ) is non-zero with dimension vec-

tor, ϵxj . But this forces, C+
xj−1

· · ·C+
x1(C

+)k−1(ρ) ∼= Sxj and ρ ∼= (C−)k−1(C−
x1 · · ·C

−
xj−1

)(Sxj ) = π,

proving injectivity of dim.

33



CHAPTER 5

Applications and generalizations

5.1. Finite dimensional C-algebras

There is a natural connection between quiver representations and algebra representations coming

from the path algebra, CQ, defined in 3.1.3. One consequence of Gabriel’s Theorem 4.1.1 is that

for finite type Q = An, Dn, En with corresponding root system ∆, the indecomposable modules of

CQ are counted by |∆+| = |∆|
2 , quantities listed in Theorem 2.1.8.

In this section, we will briefly described how to generalize beyond path algebras, to other C-algebras.

We follow Chapter 2 of [2].

Recall, that the Jacobson radical of a C-algebra, A, is the two-sided ideal annihilating all simple

A-modules

J(A) = {w ∈ A : w ·M = 0, M simple} =
⋂

m maximal left ideal

m =
⋂

m maximal right ideal

m.

We claim that the maximal left ideals of CQ (which will turn out to be two-sided ideals) are

mx := ⟨a : a ∈ E(Q)⟩+ ⟨ey : y ∈ V (Q)\{x}⟩. Indeed, they are maximal since ex /∈ mx, but all other

generators are and so CQ/mx
∼= Cex = C. Any other maximal ideal, m, may not contain all the ex,

since 1 =
∑

x ex. Thus, some ex /∈ m and m ⊆ mx. Then

J(CQ) =
⋂
x∈V

mx = ⟨a : a ∈ E(Q)⟩.

We will call an ideal of CQ, I, admissible if J(CQ)k ⊆ I ⊆ J(CQ)2 for some k ≥ 2. In other

words, an ideal I is admissible if it has a generating set of elements w, where w are sums of paths

of lengths between 2 and k. While CQ may be infinite dimensional in the case when there is a

directed cycle by Remark 3.1.4, CQ/I is finite dimensional since it is a quotient of CQ/J(CQ)k,
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whose dimension is bounded by the number of paths of length at most k. Furthermore,

(CQ/I)/(J(CQ/I)) ∼= CQ/J(CQ) ∼= C⟨ex : x ∈ V (Q)⟩ ∼= C⊕n,

where n = |V (Q)| and C⊕n is the C-algebra obtained by taking the n-fold direct sum of C.

We will call a finite dimensional C-algebra, A, basic, if A/J(A) ∼= C⊕n for some n. We saw above

that CQ/I is basic for admissible I. It turns out that all basic algebras are of this form

Theorem 5.1.1. For any basic algebra, A, there is a unique quiver, Q, and some (possibly non-

unique) admissible ideal I ⊆ CQ, such that A ∼= CQ/I.

We sketch the construction of Q for a given A and refer the reader to the proof of Theorem 3.3.2 in

[2] for more details. The quotient, A/J(A), has n orthogonal idempotents and it turns out that they

may be lifted to orthogonal idempotents of A, e1, . . . , en. Then let Q consists of vertices e1, . . . , en

and draw dimC(ejMei) arrows from vertex ei to vertex ej , where M = J(A)/J(A)2.

An alternative construction seen in [1], has a vertex for every simple module isomorphism class of

A, Si, and adds dimC Ext1(Si, Sj) arrows from Si to Sj . For this reason, Q is sometimes called the

Ext1-quiver of A.

In general, a finite dimensional A, has A/J(A) semisimple and, by Wedderburn-Artin theorem, is

isomorphic to a direct sum of Mn(C),Mn(H), for various n. It turns out that despite seeming like

a small class of algebras, basic algebras reach all finite dimensional algebras by Morita equivilance.

Recall that two algebras A,B are Morita equivalent if the categories of A-modules and B-modules

are equivalent.

Theorem 5.1.2. Any finite dimensional C-algebra, A, is Morita equivalent to some basic algebra B.

More concretely, write A = P⊕m1
1 ⊕· · ·⊕P⊕mn

n as a sum of pairwise non-isomorphic, indecomposable

Pi. Then we may take B to be the opposite algebra of EndA(P1 ⊕ · · · ⊕ Pn).

If A is also hereditary, that is, all submodules of projective A-modules are projective, then this

35



B ∼= CQ for some Q.

Since the number of indecomp iso classes of A-modules is an invariant of Morita equivilance,

Gabriel’s theorem extends to hereditary finite dimensional C-algebras. To see if a hereditary A

has finite type, one may use the above constructions to associate a quiver and check if it is one of

the An, Dn, En.

5.2. Quivers of non-finite type

Gabriel’s theorem tells us that for finite type quivers, the set of dimension vectors that are encoun-

tered among indecomposable representations is the set of positive roots. It is natural to ask what

this set looks for non-finite type quivers. We follow chapters 6 and 7 of [5] where most of the proofs

of these statements can be found. Throughout this section Q is a quiver with no loops (Â0 is not a

sub-quiver).

To the underlying graph, Γ(Q), we associate a generalized Cartan matrix defined using the same

procedure as in Remark 2.1.11. Then there is an associated Kac-Moody Lie algebra and define the

roots of Q, ∆(Q), to be the roots of this Lie algebra, defined as in 2.4.2.

There is an equivalent but more direct definition of the roots corresponding to a quiver. Define

the Weyl group, W (Q), associated to an undirected multi-graph, Γ(Q), by letting it be the group

generated by reflections on RV (Γ), given by a slight generalization of equation (2.3) that accounts

for multi-edges,

(σy(α))(x) =


α(x), y ̸= x

−α(y) +
∑

z∈V dz,y · α(z), y = x

, (5.1)

where dz,y is the number of edges between z, y. This is equivalent to σy(α) = α− (α, ϵy)Qϵy, where

(, )Q is the Cartan form defined in 4.2.1.

Definition 5.2.1. The roots of Q, ∆ ⊆ ZV (Q), are defined as follows. The real roots are ∆re :=⋃
x∈V (Q)W · ϵx.
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Let

K := {α ∈ NV (Q)\0 : α(x) ≤ (σx(α))(x) ∀x, supp(α) connected in Γ(Q)}.

Then the imaginary roots are ∆im :=W ·K ⊔ (−W ·K). Then ∆ := ∆re ∪∆im.

It is not trivial, but can be shown that the real and imaginary roots both split into positive and

negative roots based on if they have all positive or all negative entries. An easy computation shows

that BQ(σxα) = α and so BQ is invariant under the Weyl group. In particular, all α ∈ ∆re have

BQ(α) = 1. But for the condition α being in K is equivalent to (α, ϵx)Q ≤ 0 and so

2BQ(α) = (α, α)Q =
∑
x∈V

α(x)(α, ϵx)Q ≤ 0,

so the sets of real and imaginary roots are disjoint.

As we will see later, the generalized set of roots precisely agrees with the set, {α : Indα(Q) ̸= ∅}.

We say that π ∈ Ind(Q) is preprojective if (C+)n(π) = 0 for some n, preinjective if (C−)n(π) = 0

for some n, and regular otherwise. Note that a representation may be both preprojective and

preinjective, which is the case for all indecomposable representations of a finite type Q. It is a

fact, that π ∈ Rep(Q) is projective (resp. injective) when viewed as a CQ-modules, if and only if

C+(π) = 0 (resp. C−(π) = 0), motivating the names.

5.2.1. Extended Dynkin diagrams

Let Q, be one of An, Dn, En and Q̂ be the corresponding extended Dynkin diagram, Ân, D̂n, Ên,

with auxiliary vertex y0. Recall, that κ is the primitive isotropic labelling in Example 2.1.13. By

Remark 2.1.15, subgraphs of Γ(Q̂) are of ADE-type.

Theorem 5.2.2. Let Γ(Q̂) be an extended Dynkin diagram. Then:

1. ∆re = {α ∈ ZV : BQ̂(α) = 1}

2. ∆im = (Zκ)\0 = {α ̸= 0 : BQ̂(α) = 0}
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3. The Weyl group is isomorphic to the internal semidirect product

W (Q̂) ∼=W (Q)⋉ ⟨τα : α ∈ ZV (Q)⟩,

where τα(β) = β + (α, β)Qκ for β ∈ RV (Q). The group ⟨τα : α ∈ ZV (Q)⟩ ∼= Z|V (Q)| and so

W (Q̂) is infinite.

Example 5.2.3. The Kronecker quiver, K, has Γ(K) = Â1, with both edges pointed in the same

direction.

x y

The real roots have the form ∆re = {(n, n+ 1)} ∪ {(n+ 1, n)} and the imaginary roots are ∆im =

{(n, n) : n ̸= 0}. We now list all the indecomp iso classes. The preprojective indecomp iso classes

are given by

Cn Cn+1

[
In
0

]
[

0
In

]

and the preinjective iso classes are of the form

Cn+1 Cn
[In 0]

[0 In]

The regular indecomp iso classes are parameterized by [λ : µ] ∈ CP1:

Cn Cn
Jn(λ)

Jn(µ)

|
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The Kronecker quiver ends up being crucial to the classification of indecomposable representations

for general extended Dynkin diagrams. We refer the reader to Theorem 7.41 of [5].

Theorem 5.2.4. For Γ(Q̂) be an extended Dynkin diagram:

1. Indα(Q̂) ̸= ∅, if and only if α ∈ ∆+

2. If α ∈ ∆+
re, there is a unique indecomp iso class which is preprojective or preinjective

3. If α ∈ ∆+
im, then there are infinite indecomp iso classes which are regular and Indα(Q) is

parameterized in a natural way by (CP1\D) ∪ P , where D,P are finite sets.

5.2.2. Wild quivers

Consider a vertex with two loops

It has path algebra k⟨x, y⟩, generated by non-commuting indeterminants, x, y. The problem of find-

ing canonical forms for the indecomp iso classes, is equivalent to simultaneous block diagonalization

of two matrices A,B ∈ Mn(C), which is called the wild problem and is quite complicated. We say

an algebra is wild if it contains the representation theory of this quiver. The statement is formalized

as follows

Definition 5.2.5. A C-algebra, A, is wild if there is an A-k⟨x, y⟩-bimodule, M , such that the

functor F : k⟨x, y⟩-mod → A-mod, X 7→ M ⊗k⟨x,y⟩ X has F (X) indecomposable, if and only if X

indecomposable and F (X) ∼= F (Y ), if and only if X ∼= Y .

If A is not wild, then it is tame.

Theorem 5.2.6 (Drozd). The path algebra of a quiver, Q, is wild, if and only if Γ(Q) is not a

Dynkin nor an extended Dynkin diagram.

Furthermore, wild quivers are classified by having imaginary roots α ∈ ∆im such that BQ(α) < 0.
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This is not the case for tame quivers, since BQ is positive semi-definite when Γ(Q) has spectral

radius ≤ 2. We finish the section by stating a theorem of Kac that greatly generalizes Gabriel’s

theorem

Theorem 5.2.7 (Kac). If Q is a quiver without loops, then

1. Indα(Q) ̸= ∅, if and only if α ∈ ∆+

2. If α ∈ ∆+
re, there is a unique indecomp iso class

3. If α ∈ ∆+
im, then there are infinite indecomp iso classes parameterized by a union of algebraic

varieties Z1, . . . , ZN , with maximal dimension max(dim(Zi)) = 1−BQ(α)

Notice that because wild quivers have α ∈ NV with BQ(α) < 0, Indα(Q) has parameterizing varieties

of dimension ≥ 2. This gives an alternative characterization of tame quivers as the ones with each

Indα(Q) being parameterized by a finite set of points and curves. This gives further insight into

why the wild problem is so difficult.

5.3. ADE-correspondence for finite subgroups of SU(2)

We finish the paper, with another example of ADE-correspondence: the finite subgroups G ≤ SU(2)

are in one-to-one correspondence with the simply laced Dynkin diagrams. We follow Chapter 8 of

[5].

Let G ≤ SU(2) be a finite non-trivial subgroup of SU(2). Let {ρi} be a set of representatives of

the irreducible representations of G over C. Let ι : G ↪→ SU(2) be the representation given by

inclusion (not necessarily irreducible). Now construct a multi-graph, Γ(G), whose vertex set is {ρi}.

For every pair of distinct vertices, ρi, ρj , draw dimCHomG(ρi, ρj ⊗ ι) arrows between them, where

HomG(A,B) is the space of G-invariant linear maps form A to B and ρj ⊗ ι is the internal tensor

product of G-representations.

We claim that dimCHomG(ρi, ρj ⊗ ι) is symmetric in i, j, making Γ well-defined. Since SU(2)
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consists of unitary matrices, for all g ∈ G ⊂ SU(2), ι∗(g) = (g−1)∗ = g = ι(g). Then

HomG(ρi, ρj ⊗ ι) ∼= HomG(ρi ⊗ ι∗, ρj) ∼= HomG(ρj , ρi ⊗ ι∗) ∼= HomG(ρj , ρi ⊗ ι),

where the second isomorphism follows by Schur’s lemma. It turns out that the graphs, Γ(G),

obtained from various G are precisely the extended Dynkin diagrams, with the exception of Â0.

The following is known as the McKay correspondence

Theorem 5.3.1 (McKay). There is a one-to-one correspondence between finite subgroups, G ≤

SU(2) up to conjugation and extended Dynkin diagrams, associating the trivial subgroup with Â0

and non-trivial G with Γ(G), whose vertices correspond to the irreps of G.

Furthermore, we may take the auxiliary vertex of the extended Dynkin diagram to be the trivial

representation of G. The labelling of vertices assigning dim(ρi) to vertex ρi, is precisely the primitive

isotropic labelling, κ.

We now present explicit constructions of these groups, first giving their presentations. Let non-

trivial G ≤ SU(2) have Γ(G) = Γ̂0, where Γ0 is one of the An, Dn, En. Recall by Remark 2.1.16,

that a graph is a simply laced Dynkin diagram, if and only if it consists of three branches of lengths

c ≥ b ≥ a ≥ 1, satisfying 1
a + 1

b +
1
c > 1. Let a, b, c be the branch lengths associated to Γ0. Then

the group G given by the McKay correspondence has presentation

G ∼= ⟨x, y, z : xa = yb = zc = xyz⟩.

Note that for Γ0 = An, a = 1 and there are multiple choices for b, c, as long as b + c = n + 1. For

each of these choices, the presentation is isomorphic to the cyclic group, Zn+1, which is easily seen

as a subgroup of SU(2), by mapping t ∈ Zn+1 to
(
ωt

ω−t

)
, for ω a primitive (n+1)-th root of unity.

For Γ0 = Dn, n ≥ 4, we have a = b = 2 and c = n−2. In this case, G is the binary dihedral group,

BD4c. It is obtained by taking the dihedral group of the c-gon and viewing it as a subgroup of SO(3),

by centering the c-gon at the origin. Then one uses the well-known double cover SU(2) → SO(3)
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to lift the dihedral group to an order 4c subgroup of SU(2).

For Γ0 = E6, E7, E8, we have a = 2, b = 3 and c = 3, 4, 5. Observe that in each case, “{b, c}”

is the Schlafli symbol of a regular polyhedron. Here, the Schlafli symbol, {b, c}, corresponds to a

regular polyhedron with b-gons as faces and c faces at each vertex. Swapping b, c corresponds to

taking the dual polyhedron: the cube for the octahedron, the dodecahedron for the icosahedron, and

the tetrahedron being self-dual. Just as with the binary dihedral groups, we may take the regular

polyhedron, X, corresponding to a Schlafli symbol, {3, 3}, {3, 4}, {3, 5}, and view its symmetries as

a subgroup of SO(3) by centering X at the origin. These are called the polyhedral groups, which

are isomorphic for dual polyhedra. Upon lifting the polyhedral groups to SU(2), we get the binary

polyhedral groups.

We see how the double cover SU(2) → SO(3) also helps classify the subgroups of SO(3), however,

odd order cyclic groups Z2n+1 are not lifts of any subgroups of SO(3). It will still turn out that

the subgroups of SO(3) are the cyclic groups of arbitrary order, dihedral groups, and polyhedral

groups, which also have a natural ADE-correspondence. We summarize in the table below

Dynkin diagram Group (a, b, c) |G|
An Zn+1 (1, b, n+ 1− b) n+1
Dn BD4(n−2) (2, 2, n− 2) 4(n− 2)

E6 binary tetrahedral (2, 3, 3) 24
E7 binary octahedral (2, 3, 4) 48
E8 binary icosahedral (2, 3, 5) 120

Table 5.1: Finite subgroups of SU(2)

Notice that the order of the group is directly related to the triplet, a, b, c, via 4
|G| =

1
a +

1
b +

1
c − 1.

See [5] for a simple proof of this formula.
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