

S_n -representations and symmetric functions

A **representation** of S_n describes an action of S_n on some vector space V. Every S_n representation uniquely *decomposes* into a direct sum of **irreducible components**, \mathbb{S}^{λ} , indexed by partitions $\lambda \vdash n$. Example for n = 4:

 $V \cong \mathbb{S}^{(2,1,1)} \oplus \mathbb{S}^{(2,1,1)} \oplus \mathbb{S}^{(4)} \oplus \mathbb{S}^{(3,1)}$

The algebra of **symmetric functions**, Λ , contains formal power series in infinite variables, $F(x_1, x_2, \ldots)$, that are unaffected by permuting variables. The **Frobenius map** provides a bridge between S_n -representations and degree *n* symmetric functions

Frobenius image

Frob : "S_n-representations" $\longrightarrow \Lambda^{(n)}$ \mathbb{S}^{λ} irreducibles $\longmapsto s_\lambda(x_1,x_2,\ldots)$ Schur function $\longmapsto \frac{|C_{\lambda}|}{n!} p_{\lambda}(x_1, x_2, \ldots)$ $1_{C_{\lambda}}$ indicator of conj class C_{λ} scaled power sum funcion $? \longmapsto m_{\lambda}(x_1, x_2, \cdots)$ monomial basis

So the example above becomes

 $Frob(V) = 2 s_{(2,1,1)} + s_{(4)} + s_{(3,1)}$

Representation stability

Church, Ellenburg, and Farb [2] introduced **representation stable** sequences

$$\overset{S_1}{\underset{\varphi_1}{\overset{\sim}{\longrightarrow}}} \xrightarrow{\begin{array}{c}S_2\\ & & \\ & &$$

where each V_n is an S_n -representation and the multiplicities of irreducibles *stabilize*.

Given
$$\lambda = (\lambda_1, \cdots, \lambda_l) \vdash k$$
, define
 $\lambda[n] := (n - k, \lambda_1, \lambda_2, \cdots, \lambda_l) \vdash n$

for $n \geq k + \lambda_1$.

Definition

A sequence of the form (1) is **uniformally representation multiplicity stable (URMS)** if $\exists N$, s.t. for all λ and $n \geq N$, the multiplicity of $\mathbb{S}^{\lambda[n]}$ in V_n does not depend on n.

Representation stability in [2] = URMS + some extra conditions on the maps φ_n .

$$V_n = \mathbb{S}^{(n-2,1,1)} \oplus \mathbb{S}^{(n-2,1,1)} \oplus \mathbb{S}^{(n)} \oplus \mathbb{S}^{(n-1,1)}$$

is URMS with stable range $n \geq 2$.

This phenomena has been observed in many scenarios: cohomology of configuration spaces, pure braid groups, flag varieties, homology of certain Torelli subgroups [2].

MONOMIAL STABILITY IN FROBENIUS IMAGES

Nikita Boirsov Department of Mathematics

Monomial and character stability

Given the Schur expansion

$$\operatorname{Frob}(V_n) = \sum_{\lambda} c_{\lambda,n} s_{\lambda[}$$

define $\operatorname{rg}_{\lambda}^{s}(V_{\bullet})$ to be the smallest N, such that the coefficients $c_{\lambda,N} = c_{\lambda,N+1} = c_{\lambda,N+2} = \cdot$

 V_{\bullet} being URMS is equivalent to $\sup_{\lambda} \operatorname{rg}_{\lambda}^{s}(V_{\bullet}) < \infty$. Or to track when the coefficient $d_{\mu,n}$ stabilizes in

 $Frob(V_n) = \sum d_{\mu,n} m_{\mu[n]}$

Proposition (B. 2025+)

Every Schur coefficient, $c_{\lambda,n}$, stabilizes if and only if every monomial coefficient, $d_{\mu,n}$, stabilizes.

Main Result (B. 2025+)

Define the **weight** of a sequence V_{\bullet}

 $\operatorname{wt}(V_{\bullet}) = \sup\{|\lambda| : c_{\lambda,n} \neq 0, \text{ some } n\}.$

(a) A sequence $(V_n)_n$ with V_n an S_n -rep is URMS if and only if $wt(V) < \infty$ and the monomial coefficients $d_{\mu,n}$ in (3) stabilize. In this case, the multiplicity of $\mathbb{S}^{\lambda[n]}$ in V_n stabilizes once

 $n \geq \max_{|\mu| < |\lambda|} \operatorname{rg}_{\mu}^{m}(V_{\bullet}).$

A uniform stable range of V_{\bullet} is given by $n \ge \max_{|\mu| \le \operatorname{wt}(V_{\bullet})} \operatorname{rg}_{\mu}^{m}(V_{\bullet})$. (b) The sequence $(V_n)_n$ URMS if and only if $wt(V) < \infty$ and there is an N s.t. for every $k \leq \operatorname{wt}(V_{\bullet})$ and every $\sigma \in S_k$, the character value $\chi^{V_n}(\sigma (n-k+1 \ n-k \ \cdots \ n))$

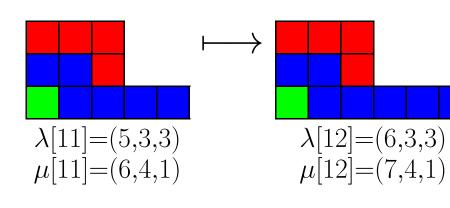
stabilizes for $n \geq N$. In this case, a uniform stable range of V_{\bullet} is given by $n \ge \max\left(2 \cdot \operatorname{wt}(V_{\bullet}) + 1, N\right).$

Proof idea

The idea is to use change of basis between (2) and (3)

 $c_{\lambda,n} = \sum_{|\mu| < |\lambda|} d_{\mu,n} K_{\mu[n],\lambda[n]}^{-1},$

where $K_{\mu[n],\lambda[n]}^{-1}$ are the **inverse Kostka numbers**, signed sums of special rim hook tableaux of shape $\lambda[n]$ and content $\mu[n]$. Then $K_{\mu[n],\lambda[n]}^{-1} = K_{\mu[n+1],\lambda[n+1]}^{-1}$ for large nbecause of certain sign-preserving bijective maps



(1)

,	(2)
efficients have stabilized	
\cdots . ne can similarly define $\operatorname{rg}_{\mu}^{m}($	$V_{ullet})$
b]•	(3)

(4)

(5)

Diagonal coinvariants

 $BP_n = \mathbb{C}[x_1, \ldots, x_n, y_1, \ldots, y_n]$ and so also on

Proposition (Church, Farb, Ellenburg 2014 [2])

The sequence of (i, j) bi-graded components, $[DR_n]_{(i,j)}$ is representation stable with weight i + j and uniform stable range $n \ge 2(i + j)$.

While the Schur expansion of $Frob([DR_n]_{(i,j)})$ is poorly understood, Carlsson and Mellit [1] proved a formula for the monomial coefficients in terms of **labelled Dyck paths**. We leverage this to get a refinement of the above statement.

The multiplicity of $\mathbb{S}^{\lambda[n]}$ in $[DR_n]_{(i,j)}$ stabilizes once $n \ge |\lambda| + \max(|\lambda|, i+j)$.

Labeled Dyck path contributing to the coefficient of $m_{(2,2,1,1)}$ in $[DR_6]_{(5,3)}$

Macdonald polynomials

There is a certain S_n -subrepresentation $MD_{\mu[n]} \subset BP_n$, $MD_{\mu[n]} :=$ Span of partial derivatives of $\Delta_{\mu[n]}(x_1, \ldots, x_n, y_1, \ldots, y_n)$,

where $\Delta_{\mu[n]}$ is the **bialternant determinant**. The graded Frobenius image $\operatorname{Frob}(MD_{\mu[n]}) = \tilde{H}_{\mu[n]}[X;q,t]$

is the **modified Macdonald polynomial**. The Schur expansion is poorly understood, but there is a monomial formula in terms of $\mu[n]$ -fillings due to Haglund, Haiman, and Loehr [3].

Proposition (B. 2025+)

 $\mu_1 + i$).

References and acknowledgements

I thank George Seelinger and my advisor, Jim Haglund, for helpful conversations

- representations of symmetric groups, 2014.

Applications

By permuting variables $\sigma \cdot x_i = x_{\sigma(i)}, \ \sigma \cdot y_i = y_{\sigma(i)}, \ S_n$ acts on the graded algebra

 $DR_n := BP_n / (BP_n)_+^{S_n}.$

Proposition (B. 2025+)

			6
		5	
	4		
	1		
3			
2			

The multiplicity of $\mathbb{S}^{\lambda[n]}$ in $[MD_{\mu[n]}]_{(i,j)}$ stabilizes once $n \ge |\lambda| + \max(|\lambda|, |\mu| + 1)$ $\mu_1 + i$). The sequence is URMS with stable range $n \ge i + j + \max(i + j, |\mu| + j)$

[1] CARLSSON, E., AND MELLIT, A. A proof of the shuffle conjecture, 2018.

[2] CHURCH, T., ELLENBERG, J., AND FARB, B. Fi-modules and stability for

[3] HAGLUND, J., HAIMAN, M., AND LOEHR, N. A combinatorial model for the macdonald polynomials. *Proceedings of the NAS 101*, 46 (Nov. 2004).